msAzureVideo
10K views
Oct 30, 2023
msAzureVideo
View Video Transcript
0:00
well a bit of introduction about myself yeah this is Kuljot first year
0:05
undergrad at IIT Bombay at the Department of Environmental Science and Engineering batch of 2026 yeah so we'll be looking at rank prediction using MS
0:15
Azure ML workspace so the first question is what does the rank predictor do so
0:24
basically I've created a rank predictor model using machine learning from Microsoft Azure portal and the rank predictor uses linear regression algorithm which is a
0:36
mathematical algorithm which we are gonna dwell deeper in the latest slides and so we are using
0:46
this mathematical algorithm to predict the closing ranks of various engineering discipline branches
0:51
at various IITs by observing the previous 10 to 12 year trends so what my model does is I feed
0:58
data into the model that is the closing ranks of various branches at various iits starting right
1:05
from the year 2008 to the year 2023 then the model uses linear regression mathematical algorithm to
1:14
observe the pattern the various pattern changes the various trends starting right from the year
1:19
2008 to 2023 and then it creates a sort of linear equation which again we are gonna look into in the
1:29
later slides and then using that linear equation the model predicts the closing rank for the year
1:38
2024 or for the for whatever year we're concerned about and for this model I've used MS Azure
1:46
machine learning works workspace to to predict the ranks so talking about the algorithm our
1:56
algorithm is linear regression and this algorithm is supposedly the most basic algorithm that
2:06
could be used for a model like the one that i've created so so basically there are two types of
2:14
linear regression algorithm one is the multivariate algorithm and the second is univariate algorithm
2:20
and as the name suggests the difference between the two is very basic so uh in multivariate in
2:27
multivariate algorithm you have one uh dependent variable and one independent and sorry and
2:35
multiple independent variables whereas in univariate linear regression algorithm you have one uh
2:43
dependent variable and one independent variable and the model that i have created uses
2:50
univariate linear regression where wherein the dependent variable would be the closing
2:57
rank and the independent variable would be the year that we are concerned about
3:04
now in case of a univariate linear regression the equation is you can correlate the equation to that of a straight line that represents the relationship between the dependent and independent variables and
3:21
Moving on to the next slide Okay, so basically What I have here is a graph of univariate linear regression
3:33
Wherein y this y over here is the dependent variable and the x over here is the independent
3:40
variable so from this you can see the dots initially that is the points that are plotted
3:48
on the graph initially are not in a straight line but what we are doing with linear regression is
3:53
where we are creating the the equation of a straight line and we are going to use the
4:00
equation of this straight line over here to basically predict to basically plot y for a
4:09
specific value of x so in my model the y over here which is the dependent variable is the
4:18
closing rank of the branch that we're concerned about and the x that is the independent variable
4:25
over here is the year that we'll be talking about so the equation looks something like and sort of a
4:35
straight line y is equal to a plus bx where y is again the dependent variable x is the independent
4:42
variable a is the intercept on the y-axis so what I mean by intercept is if I produce the straight
4:49
line backward the point at which this straight line is going to cut the y-axis would be my
4:55
intercept that is the value of a and b is the coefficient of x which can be easily found out by
5:01
writing the values of y for the respective values of x and by elimination method we can easily find
5:07
the coefficient of x so you can correlate this coefficient of x by i mean by the slope of a
5:16
right so yeah that's pretty much it for this slide I guess yeah moving on to the next slide
5:24
okay now the main question here is how reliable is my model so the data is predicted or collected
5:35
using mathematics that is linear regression algorithm is used and obviously mathematics
5:39
doesn't like but the main point here is the sentiments of the people or the
5:46
industry trends aren't taken into account so I mean these industry trends
5:53
or the the thought process of the people can obviously be tracked and monitored
6:00
using AI enable tools which again is an advanced case so but for my model I
6:08
I haven't done it. So, uh, if any, uh, uh, I mean, if, if
6:14
if any random variation is observed, uh, please forgive me, I guess
6:20
And yeah, that's pretty much it. Okay. So for the model that I here is uh the mean absolute error of the model would be 77 That means the rank let say the rank that i predicted was 200 around 200 for uh let say iat root key computer science so that means the
6:39
the rank can vary between 200 plus or minus 77 yeah and the coefficient of determination here is
6:46
0.998712 which is approximately less than 1 by a magnitude of 0.01 and so the principle here is
6:58
as close the coefficient or determination is to 1 the more precise or the more accurate our model
7:07
works in mathematical sense so obviously my model in mathematical sense is working quite great and
7:16
yeah that's pretty much it about this slide. Okay so the excel sheet that I'll be providing will
7:26
look something like this. So what you have here is the closing and closing ranks for
7:34
various branches from year 2008 to year 2023. So this is so the data here is already available
7:45
on various websites and the data for the year 2024 is the predicted closing lines for the various
7:54
branches and I mean for to be on the safer side I'll get the error as 200 plus or minus 200 that
8:03
means let's say if the prediction closing if the predicted closing line for IIT Bombay Aerospace
8:10
department is 3.115 that means the actual closing rank can range from 3.115
8:21
minus 200 to 3.115 plus 200. Okay. So that's it for the PowerPoint presentation
8:31
Yep. So now we'll be moving on to the Azure ML workspace portal
9:05
So let's go to designer. Yeah. Final line prediction
9:17
So yeah, the designer is basically the place where I train my machine learning model
9:28
And so it doesn't require much of coding. It's just a basic graphical user interface
9:35
So here is the algorithm that I've used, the dataset that I used for training This is the train model area where it uses the linear regression algorithm and trains the model by using linear regression algorithm on the defined rank dataset that has been provided to it
9:55
So there's the score model and the evaluate model function here. So to show things I have..
10:05
Yeah, so that's the data that I provided in terms of comma separated value. Yeah
10:17
Now moving on to basically configure and submit
10:32
Go to view details
10:44
So after training the model, the score model looks something like this
11:02
Yeah, so this is the predicted column. So I've trained the model on predicting year 2023
11:10
And so this is the predicted column. And this is the data that I have already provided
11:18
So basically the model checks whether the value, this value is close to this value or not
11:24
and then accordingly it provides me the error value and I mean group mean
11:33
squared error value and stuff like that okay so that is the train model area now
11:39
moving on to the real time model area yep
11:54
So, in this I have provided the data manually to the model
12:19
Now this is the SPOR model area where the model has predicted some of the ranks for the year
12:29
that I am concerned about that is the year 2024. So this is the predicted rank area and this is
12:37
wherein I have provided the values in terms of comma separated values to the model
12:49
so yeah that's pretty much it I guess hope you enjoyed it
12:58
thank you
#Education
#Engineering & Technology
#Machine Learning & Artificial Intelligence